313 research outputs found

    On Identifying Disaster-Related Tweets: Matching-based or Learning-based?

    Full text link
    Social media such as tweets are emerging as platforms contributing to situational awareness during disasters. Information shared on Twitter by both affected population (e.g., requesting assistance, warning) and those outside the impact zone (e.g., providing assistance) would help first responders, decision makers, and the public to understand the situation first-hand. Effective use of such information requires timely selection and analysis of tweets that are relevant to a particular disaster. Even though abundant tweets are promising as a data source, it is challenging to automatically identify relevant messages since tweet are short and unstructured, resulting to unsatisfactory classification performance of conventional learning-based approaches. Thus, we propose a simple yet effective algorithm to identify relevant messages based on matching keywords and hashtags, and provide a comparison between matching-based and learning-based approaches. To evaluate the two approaches, we put them into a framework specifically proposed for analyzing disaster-related tweets. Analysis results on eleven datasets with various disaster types show that our technique provides relevant tweets of higher quality and more interpretable results of sentiment analysis tasks when compared to learning approach

    How to evaluate multiple range-sum queries progressively

    Get PDF
    Decision support system users typically submit batches of range-sum queries simultaneously rather than issuing individual, unrelated queries. We propose a wavelet based technique that exploits I/O sharing across a query batch to evaluate the set of queries progressively and efficiently. The challenge is that now controlling the structure of errors across query results becomes more critical than minimizing error per individual query. Consequently, we define a class of structural error penalty functions and show how they are controlled by our technique. Experiments demonstrate that our technique is efficient as an exact algorithm, and the progressive estimates are accurate, even after less than one I/O per query
    • …
    corecore